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Abstract Compound channels are basically described as two stage open channels
having main river and its adjoining floodplains. The momentum transfer phenomenon
at the junction of main channel and floodplain is very crucial to be understood to
estimate the discharge. The difference in water depth and roughness between the two
zones generally causes momentum exchange at the interface. It is simple to quantify
this momentum exchange for uniform flow conditions in river; however, for non-
uniform flow condition the quantification is complex as the flow properties change in
both longitudinal and lateral directions. Therefore, a study has been done on overbank
flow with non-uniform flow condition, and stage discharge relationships are analyzed
for accurate modeling. As natural rivers may have different configurations, so two
different types of channels that are converging and diverging channels are considered
and flow variables at different longitudinal positions are analyzed. Two discharge
predicting models are developed which can be used for flow in natural rivers. These
models depend on the non-dimensional forms of geometric and flow parameters and
the percentage of the boundary shear forces carried by the adjacent floodplains. So it
is required to analyze and estimate the boundary shear force distribution carried by
main channel and non-prismatic floodplains before predicting flow. So, two different
equations are proposed for percentage shear carried by converging and diverging
floodplains. In addition, the developed models give simple ways for the quantification
of percentage boundary shear force and provide accurate discharge result through
non-prismatic channels. The predictions of the models are then compared with the
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models of other researchers. The prediction efficiency of the present model is found
better than the models of previous researchers.

Keywords Momentum exchange + Non-uniform flow - Diverging floodplain *
Converging floodplains - Stage-discharge relationships

11.1 Introduction

Compound channels are the typical patterns of flooded rivers. The study of these
channels have become vital for environmental, ecological, and design issues. The
behavior of flow in rivers for both in bank and overbank flow conditions have been
widely investigated. It is found that many investigators have done their research under
uniform flow conditions; however, in natural rivers the flow pattern is generally non-
uniform flow. So the applications of models which are developed for uniform flow
conditions are found to give spurious results for non-uniform flow conditions. For
practical point of view, the uniform flow condition in a flooded river channel is
ideal and is considered as a theoretical reference flow as stated by Proust (2005). So
understanding and analyzing the non-uniform flow in compound channels become a
universal research area nowadays. Bousmar and Zech (1999), Bousmar et al. (2004),
Rezaei (2006), Proust et al. (2006), and Rezaei and Knight (2009) have analyzed the
non-uniform flow in laboratory flumes. In laboratory environments, diverging and
converging channels constructed as non-uniform flow are usually acquired in these
types of non-prismatic compound channels. It is proved by many investigators that
momentum transfer at junction of main channel and floodplain causes non-uniformity
of the boundary shear stress distribution along the subsection perimeters. Moreover,
the distribution of boundary shear force in subsections is also indispensible for inves-
tigating the sediment transport problems. Knight and Hamed (1984), Khatua et al.
(2012), Mohanty et al. (2014), Devi et al. (2017), Khuntia et al. (2018) and Devi
and Khatua (2020) developed models for distribution of boundary shear force for
compound channels with homogeneous and non-homogeneous roughness by incor-
porating the momentum exchanges at junctions. For non-prismatic compound chan-
nels, Naik et al. (2017) developed a relationship to estimate percentage boundary
shear force carried by floodplains of a converging compound channel as a function
of geometric and hydraulic parameters. However, for diverging floodplains, there
is less work found on lateral boundary shear distribution as well as on percentage
shear force carried by floodplains (Das et al. 2020). Here, models are developed for
percentage boundary shear force distribution in converging and diverging compound
channels as a function of different geometric and hydraulic parameters of non-
prismatic compound channels. Further, this distribution of boundary shear force
is related to find out the discharge through the channels.
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11.2 Experimental Setup

In this paper, the non-uniform steady flows are considered to be occurred in non-
prismatic compound channels with narrowing and enlarging floodplains. The non-
uniform steady flows are also occurred in prismatic geometries (Proust et al. 2013).
Due to less availability of data sets, this type of flow condition is not considered
here. In present research, two non-uniform flow geometric channels are considered.
Firstly narrowing compound channels, where the upstream geometry gets reduced
toward downstream as shown in Fig. 11.1a and second one is enlarging one where
the upstream geometry gets enlarged along flow direction (Fig. 11.1b).

There are many investigations devoted for the modeling of boundary shear distri-
bution in subsections of a compound channels under uniform flow condition (Khatua
et al. 2011; Mohanty and Khatua 2014). As the cross section of a non-prismatic
compound channel changes with the longitudinal distance, the flow depth varies in
longitudinal direction. In a consequence, the distributions of the flow variables such
as boundary shear and discharge vary longitudinally although the discharge remains
constant. To study the variation, experiments are performed inside the flume having
dimensions as 22 m long x 2 m wide x 0.5 m depth, for different geometric and
hydraulic conditions. Three sets of experiments are conducted in compound chan-
nels having enlarging floodplains (enlarging angle 5.93°, 9.83°, and 14.57°) with six
different relative flow depths (0.15, 0.20, 0.25, 0.30, 0.40, and 0.50). In this study,
the available experimental data sets of previous investigators (both narrowing and
enlarging compound channels) along with the data sets of own experimental channels
are utilized (Das et al. 2019). The exchange of momentum at the interface between
the main channel and the floodplains also strongly affects both boundary shear and
velocity distribution.
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Fig. 11.1 Top view of the compound channels with a narrowing geometries and b enlarging
geometries
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11.3 Preliminary Analysis

11.3.1 Development of Boundary Shear Distribution Model

The boundary shear distributions for symmetric and asymmetrical straight compound
channels are developed early by previous investigators. Figure 11.2 demonstrates
the boundary elements of an overbank flow section. Boundary elements from a
to g comprising the wetted perimeter denotes inclined floodplain wall of length
J2(H — h), left flood plain of width by, main channel left side slope ﬁh, bed
width of channel b, main channel right side slope +/2%, right flood plain width bp,
flood plain wall of inclined length V2 (H —h) (Devietal.). To estimate the shear force
distribution (per meter length) at each element of the wetted perimeter, shear stresses
at each point of the respective element are numerically integrated. To obtain the total
shear force (per unit length of the wetted perimeter) of the compound channel, shear
forces carried by all the elements are added. This is the total resistance offered by
the compound channel, and it is used as a divisor while calculating percentage shear
force carried by the flood plain %S, or by other boundary elements.

Previous investigators have developed some equations for calculating %Sg, as
listed below.

1. Knight and Demetriou (1983)
%Sy = 48(c — 0.8)"2(2p)™ (11.1a)
2. Knight and Hamed (1984)
%Sty = 48(a — 0.8)0'289(26)“‘{1 + 1.02\/Elogy} (11.1b)
The exponent m can be evaluated from the relation
m =1/[0.75¢"%] (11.1c)

v is the ratio of roughness between flood plain and main channel.
3. 3. Khatua and Patra (2007)

Fig. 11.2 Schematic cross section of symmetrical compound channel
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%Sp, = 1.23(8)" 133 (38Lna + 3.6262) {1 n 1.02\/Blogy} (11.1d)

4. Khatua et al. (2012)

(11.1e)

1008(a — 1) \ %617
%sfp=4.1045< bla )>

1+B—1)

5.  Mohanty et al. (2013)

3 100{Bas — B(S + 25)}\ "¢’
%S, = 3.3254( a5 1 (=)0 ) ) [1 n 1.02\/Blogy} (11.1f)

Devi et al. (2016) found that expressions from (11.1a) to (11.1f) are well fitting to
symmetric compound channels only. So, they developed a generalized relationship
between %Sy, and %Ag, for asymmetrical compound channel as

3
(I+5)+Bla—1-7)

(11.1g)

100, 05—1—@4_0-_35 0.717
%Sty =3.576{ B( 22)

where width ratio (o) = (B/b), relative flow depth () = (H — h)/H, main channel
aspect ratio (3) = (b/h), flow aspect ratio (3) = (b/H), B = Total compound channel
width, b = main channel bottom width, H = flow depth over main channel, h = bank
full depth and for trapezoidal channel (V:H::1:s) s = side slope of main channel.
All the discussed models are suitable for straight compound channels having
different cross-sectional geometries under uniform flow condition. However, for non-
uniform flow condition, Naik et al. (2017) gave aboundary shear force model which is
well fitted for compound channels having converging floodplains for limited flow and
geometric condition only. According to the author’s knowledge, there has been a less
work devoted to diverging compound channel and no suitable model has been devel-
oped for boundary shear force distribution for this type of channels. Keeping these
points in view, this research has been extended to develop a general equation to predict
boundary shear distribution for compound channels having non-prismatic flood-
plains. So, both converging and diverging compound channels are taken into account
and separate models are proposed for each of them. For this purpose, experiments
have been conducted and additional data sets have been collected from literatures.
For developing a model for any flow variable, the primary task is to make the
dependent flow variable as non-dimensional. So, shear force distribution in terms
of percentage shear force carried by floodplain (%S f,,) is made non-dimensional
and taken as dependent flow variable. For both converging and diverging compound
channels, percentage shear force carried by floodplain (%S fp) is analyzed with
dimensionless geometric and hydraulic parameters. The geometric and hydraulic
parameters are selected investigating their dependencies on the percentage shear
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force on floodplain (%S _fp). Width ratio, relative flow depth, flow aspect ratio (6*),
relative longitudinal distance (X,), Reynolds no (Re), and Froude’s no (Fr) are
taken as the non-dimensional independent parameters which are influencing the shear
force of non-prismatic compound channels. Width ratio («) is defined as the ratio of
the total width of compound channel to bottom width of the main channel, relative
flow depth () is defined as the ratio between the flow depth over floodplain (/) to
the total flow depth over main channel (H), relative longitudinal distance (X, ) is
the ratio between the distance (/) of a arbitrary reach of the non-prismatic reach in
longitudinal direction to the total length (L) of the non-prismatic reach. Flow aspect
ratio (6*) is the ratio between the main channel bed width to the flow depth over
it (Devi and Khatua 2019). As the behavior of flow in converging and diverging
compound channels is notably different as investigated by previous researchers, so
it needs to model the percentage shear force on floodplain (%S f,,) individually for
these channels.

For developing the models of %S ,, converging and diverging experimental
data sets from previous investigations are considered here and the details of their
geometric, hydraulic, and roughness parameters are tabulated in Tables 11.1 and
11.2 (Das and Khatua 2017). Based on the experimental results of large numbers

Table 11.1 Details of geometric parameters for all types of channel collected from experimental
work and published data for diverging and converging compound channel (Das and Khatua 2018)

Verified test channel So b in (m) h in (m) 0in (°) A 3

1 2 3 4 6 5 7

NITR data-Dv5.93 0.0014 0.34 0.113 5.93 5.82-2.76  |3.01
NITR data-Dv9.83 0.0014 0.34 0.113 9.83 5.82-2.76 | 3.01
NITR data-Dv14.57 0.0014 0.34 0.113 14.57 5.82-2.76  |3.01
B et al.-Dv3.81 0.00099 0.40 0.05 3.81 3.0-1.0 8.00
B et al.-Dv5.71 0.00099 0.40 0.05 5.71 3.0-1.0 8.00
Y-Dv3.81 0.00088 0.40 0.18 3.81 3.0-1.0 222
Y-Dv5.71 0.00088 0.40 0.18 5.71 3.0-1.0 222
Y-Dv11.31 0.00088 0.40 0.18 11.31 3.0-1.0 2.22
NK-Cv5 0.0011 0.50 0.10 5.00 1.0-1.8 5.00
NK-Cv9 0.0011 0.50 0.10 9.00 1.0-1.8 5.00
NK-Cv12.38 0.0011 0.50 0.10 12.38 1.0-1.8 5.00
B-Cv3.81 0.00099 0.40 0.05 3.81 1.0-3.0 8.00
B-Cv11.31 0.00099 0.40 0.05 11.31 1.0-3.0 8.00
R-Cv1.91 0.002003 | 0.398 0.05 1.91 1.0-3.0 7.96
R-Cv3.81 0.002003 | 0.398 0.05 3.81 1.0-3.0 7.96
R-Cv11.31 0.002003 | 0.398 0.05 11.31 1.0-3.0 7.96

B et al.—Bousmar et al. (2004), Y—Yonesi et al (2013), NK—Naik and Khatua (2016), B—
Bousmar (2002), R—Rezaei (2006), Longitudinal slope-Sp, Main channel width in meter—b, Main
channel depth in meter—#, Diverging angle in degree—6, Width ratio—3, Aspect ratio—3
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Table 11.2 Details of hydraulic and surface parameters for all types of channel collected from
experimental work and published data for diverging and converging compound channel (Das and

Khatua 2018; Das et al. 2019)

Verified test channel | Q in (m3/s) N B Re in Fr

(x 10%)
1 2 3 5 6 7
NITR data-Dv5.93 | 0.026-0.067 | 0.0095-0.0161 |0.146-0.51 |0.49-1.58 | 0.42-0.68
NITR data-Dv9.83 | 0.025-0.065 |0.0093-0.015 |0.144-0.52 |0.53-1.61 | 0.44-0.70
NITR data-Dv14.57 | 0.024-0.062 | 0.0087-0.0136 |0.142-0.51 |0.58-1.93 | 0.51-0.82
B et al.-Dv3.81 0.012-0.020 | 0.0053-0.025 |0.218-0.51 |0.34-1.39 | 0.38-0.86
Betal.-Dv5.71 0.012-0.020 | 0.0076-0.027 | 0.253-0.54 |0.34-1.30 | 0.25-0.66
Y-Dv3.81 0.037-0.0615 | 0.0121-0.0211 | 0.142-0.36 |1.43-1.93 |0.24-0.33
Y-Dv5.71 0.037-0.0615 | 0.0129-0.0207 | 0.142-0.35 |1.35-1.85 |0.26-0.362
Y-Dv11.31 0.037-0.0615 | 0.0122-0.0223 | 0.143-0.35 |1.28-1.74 | 0.28-0.38
NK-Cv5 0.043-0.062 | 0.010-0.014 0.15-0.30 | 0.47-1.46 |0.64-0.83
NK-Cv9 0.042-0.059 | 0.012-0.0163 | 0.15-0.30 |0.40-1.61 | 0.56-0.76
NK-Cv12.38 0.040-0.054 | 0.011-0.0176 | 0.15-0.30 |0.50-1.73 | 0.58-0.70
B-Cv3.81 0.010-0.020 | 0.0087-0.0226 |0.213-0.53 |0.33-1.32 | 0.26-0.60
B-Cv11.31 0.010-0.020 | 0.009-0.0341 | 0.18-0.53 |0.28-1.31 | 0.29-0.58
R-Cv1.91 0.015-0.040 |0.0083-0.0141 |0.18-0.52 |0.42-1.45 |0.56-0.81
R-Cv3.81 0.014-0.025 | 0.0093-0.0196 |0.15-0.50 |0.38-1.81 |0.35-0.71
R-Cv11.31 0.013-0.023 | 0.0097-0.0183 | 0.19-0.50 |0.42-1.92 | 0.38-0.76

B et al.—Bousmar et al. (2004), Y—Yonesi et al (2013), NK—Naik and Khatua (2016), B—
Bousmar (2002), R—Rezaei (2006), Observed discharge in m3/s—Q, Manning’s roughness
coefficient—n, Relative depth—p, Reynolds number—Re, Froude number—Fr

of published data sets, two individual equations are proposed for converging and
diverging compound channel.

The most important task in developing the new boundary shear distribution model
is to find out the most significant parameters controlling the boundary shear force
distribution in compound channels. Due to the inherent variability of flow caused
by interaction mechanism in compound channel, a large numbers of independent
parameters may influence the boundary shear distribution. Hence, it makes diffi-
culties in deriving the functional relationships between boundary shear forces with
the independent parameters. The %S, is primarily depending on the width ratio
(), relative flow depth (8), and flow aspect ratio. In addition with these three non-
dimensional parameters, three other influencing parameters, i.e., Reynolds number
(Re), Froude number (Fr), and relative longitudinal distance (X, ) are considered for
development of the %S s, model for non-prismatic compound channels. So, %S,
may be functionally defined as

%Sy, = F(a, B, 8%, Re, Fr, X,) (11.2)
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Figures 11.3,11.4,11.5,11.6, 11.7, and 11.8 graphically presents the variation of
%S ¢, value with relative flow depth, width ratio, flow aspect ratio, Reynolds number,
Froude number, and relative longitudinal distance, respectively, for converging
compound channel. The functional relationships that are existing between the %S ¢,
with «, B, 8%, Re, Fr, X, are linear, exponential, logarithmic, power, logarithmic,
and linear, respectively, for all converging compound channel considered.

Similarly for all the diverging compound channels the variations between the
dependent parameter %S s, with the non-dimensional independent parameter are
analyzed. The best relationships between %S 7, and o, 8, §*, Re, F'r, X, are shownin
Figs.11.9,11.10,11.11,11.12,11.13, and 11.14. The functional relationships that are
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Fig. 11.14 Variation of %S r, with relative distance for diverging compound channel

existing between the %S s, with «, 8, 6%, Re, Fr, X, are logarithmic, linear, expo-
nential, logarithmic, power, and logarithmic, respectively, for all diverging compound
channel considered.

11.3.2 Formulation of the Multi-variable Regression Model

Six numbers of possible single regression models between dependent parameter and
independent parameters are selected with highest coefficient of determination (R?).
Based on the relationships obtained by analyzing the large numbers of published data
sets, individual formulations have now been developed using multi-variable regres-
sion analysis. Compiling all the individual relationships two generalized formulae
are developed for converging and diverging compound channels. Finally, the models
of %S 7, with high coefficient of determination (R?) of 0.90 are obtained.
For converging compound channels

%S, = —188 + 40e"7* + 148 + 59In8* + 0.0634 Re no™***
— 2.28n(Fr no) + 6.63X, (11.3)

For diverging compound channels

%S s, = 223 +3.32a + 11.15Inf + 113¢ %" — 11.35[nRe no
— 719Frno %% 4+ 3.52In X, (11.4)

The resulted equation of percentage shear force on floodplains %S, has now
been applied to both non-prismatic data sets of previous investigators. Figure 11.15
demonstrates the predicted %S s, verses the experimental %S s, values for various
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Fig. 11.15 Comparison of predicted %Sy, with experimental predicted %Sy, for various
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Fig.11.16 Comparison of predicted %S r,, with experimental predicted %S r,, for various diverging
compound channels

converging compound channels. Similarly Fig. 11.16 demonstrates the predicted
%S r, verses the experimental %S r,, values for different diverging compound chan-
nels. These figures indicate the good agreement of models results with their actual
values as they are very close to the line of good agreement.

The above expressions, i.e., Egs. (11.3) and (11.4), are used for successfully esti-
mating the percentage shear force on floodplain any selected location along the length
of the channel where the six independent non-dimensional parameters are known.
The efficiency of the models shows that they can be applied in natural rivers with
minimum errors. For determining the water surface profile in converging compound
channels, the equation developed by Rezaei (2006) can be used.
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11.4 Conclusions

It is observed from the experimental data sets that the variations of flow variables
along the steam-wise direction for narrowing and enlarging floodplains are not
similar. So, individual models for percentage boundary shear force in floodplains
have been proposed for such channels through multi-variable regression model. The
models are expressed in terms of non-dimensional parameters such as width ratio,
relative flow depth, flow aspect ratio, Reynolds number, Froude number, and rela-
tive longitudinal distance. These models will be helpful in accounting the apparent
shear stress at the interface. The magnitudes of apparent shear stress at the inter-
face are enumerated for both the converging and diverging compound channels. The
applicability of the model is verified against the published data sets of previous
investigators.
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